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SUMMARY 
The transfer of energy through a dissociated diatomic gas in 

Couette flow is considered, taking oxygen as a numerical example. 
The  two extremes of chemical equilibrium flow and chemically 
frozen flow are dealt with in detail, and it is shown that the surface 
reaction rate is of prime importance in the latter case. The  
chemical rate equations in the gas phase are used to estimate the 
probable chemical state of the gas mixture, this being deduced 
from the ratio of a characteristic chemical reaction time to a 
characteristic time for atom diffusion across the layer. The  
influence of the surface reaction appears to spread outwards 
through the flow from the wall as gas-phase chemical reaction 
times decrease. For practical values of the surface reaction rate 
on a metallic wall, the energy transfer rate may be significantly 
lower in chemically frozen flow than in chemical equilibrium 
flow under otherwise similar circumstances. 

Similar phenomena to those discussed will arise in the more 
complicated case of boundary layer flows, so that a treatment of 
the simpler type of shear layer represented by Couette flow may be 
of some value in assessing the relative importance of the various 
parameters. 

1. INTRODUCTION 
There is at present much interest in the flow of gases at temperatures 

much greater than those which can be withstood by all known solids and, 
consequently, it is of some importance to know the rate at which heat will 
be transferred from the gas to the walls of its container, or those of some 
body passing through it. I n  heating the gas to such high temperatures 
it is highly probable that its polyatomic components will dissociate and 
absorb a large amount of energy in the process. The  dissociation energy 
then exists as a potential source of heat energy, which may be released 
following a suitable chemical reaction. The  usual heat transfer problem 
is therefore complicated by the need to consider the rates at which such 
chemical reactions may occur. I n  this connection it is necessary to consider 
both homogeneous reactions (those which occur in the gas phase) and 
heterogeneous reactions, namely those which occur at a solid surface 
ad-jacent to the gas. 

F.M. 2 F  
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The  general problem is therefore one of some complexity although 
practical solutions have been found in some cases. The  most comprehensive 
of these to date is the work of Fay & Riddell (1958), who confine their 
attention to the forward stagnation region of blunt-nosed bodies. Fay & 
Riddell’s solution represents a more exact analysis of the boundary-layer 
equations, following along the lines of Lees’ (1956) largely heuristic 
discussion of the same problem. Both references take explicit account of 
the difference in the rate of transfer of heat energy by thermal conduction 
and the rate of transfer of dissociation energy, the transport medium in 
the latter case being simple mass diffusion of atoms. It has been assumed 
in both cases that air behaves as a single diatomic gas. Previous solutions 
of the dissociation problem have been given by Moore (1952), Crown (1952) 
and Beckwith (1953). The first reference deals with the flat plate problem 
whilst the second two deal with forward stagnation regions, but all assume 
that the gas is in chemical equilibrium and imply that thermal energy and 
mass diffuse at identical rates (more strictly, they assume equality of 
the appropriate diffusion coefficients). 

The  complexity of the problem is increased in all of these works by the 
need to consider the boundary layer on a flat plate or at a stagnation point, 
giving rise to the familiar non-linear differential equations of boundary 
layer theory. However, much that is characteristic of the boundary layer 
is reproduced in the simpler viscous flow known as Couette flow. The 
lack of variation of properties in the direction of flow then creates notable 
simplifications, a fact which has been exploited by Illingworth (1950) for 
the case of a fluid of constant chemical composition. Under this 
restriction, Illingworth’s work represents the only solution of the full 
Navier-Stokes equations valid for all Reynolds and Mach numbers. More 
recently Liepmann & Bleviss (1956) have used Couette flow to exhibit 
some of the properties of a shear layer of dissociated gas. Their treatment 
implies equality of mass and thermal energy diffusion coefficients, however, 
and only considers flow at chemical equilibrium, but it extends the gas 
temperatures into the range for which ionization becomes appreciable. 

I n  the following sections we consider the question of energy transfer 
through a simple dissociated diatomic gas in Couette flow (using some values 
appropriate to oxygen for numerical illustrations). The  energy equation 
is readily integrated, yielding a relation between enthalpy, atom concentra- 
tion, and velocity. A simplification of the treatment is achieved following 
the assumption that the gas behaves as an ideal dissociating gas, a concept 
introduced by Lighthill (1956). Real gases such as oxygen and nitrogen 
appear to be very nearly ideal in this sense in a temperature range sufficient 
to cover problems of practical interest and a simple expression for enthalpy 
in terms of temperature and concentration results. From here on the 
problem resolves itself into the determination of atom concentration in 
terms of either temperature or velocity in any particular set of circumstances. 
Once this is achieved, the skin friction coefficient and Stanton, or Nusselt, 
number follows directly from integration of the momentum equations. 



Energy transfer through a dissociated gas 443 

I n  order to determine the atom concentration it is necessary to consider 
the kinetics of the dissociation and recombination reactions. While not 
difficult in principle, the treatment results in an unwieldy non-linear 
differential equation which would require numerical integration. Results 
are given below for two extreme cases, namely very fast and very slow 
homogeneous reaction rates, the full rate equations being used only to give 
an estimate of the conditions under which such assumptions may plausibly 
be made. The  heterogeneous, surface reaction is considered in both cases 
and is shown to have a controlling influence on energy transfer rate when 
gas-phase reactions occur very slowly. 

It may be permissible to interpolate here some brief remarks on the 
mechanisms involved in the energy transfer process. All three of the 
transport phenomena are explicitly concerned in the process, the basic 
mechanism in the gas phase being thermal conduction. Thermal energy 
is the sum of the energies contained in the translational, rotational, and 
vibrational modes of the gas molecules, so that its rate of transport must 
be a function of the facility with which these energies can be interchanged. 
When such interchange occurs so rapidly that it is reasonable to assume that 
each internal mode is in equilibrium at the local temperature, the classical 
Eucken correction is derived which modifies the monatomic thermal 
conductivity value to  account for the extra degrees of freedom of polyatomic 
molecules. At the temperatures which we shall consider here, the Eucken 
correction is probably accurate enough, but, in any case, it will be found 
that thermal conductivity can be absorbed into certain dimensionless 
numbers which may reasonably be assumed constant across the gas layer. 
Energy transfer also arises from the dissipation of ordered kinetic energy 
of mass motion into random thermal energy due to viscous actions in the 
gas. The  final rate of heat recovery by these means is affected by the ratio 
of the vorticity and heat energy diffusion coefficients, in other words, the 
Prandtl number. 

When the gas consists of a mixture of molecules and their dissociaeed 
atoms a further potential source of heat energy exists. Each atom in the 
mixture can be visualized as a vehicle for the transport of dissociation energy 
as it diffuses through the gas layer, the energy being released in the form 
of heat as a result of a recombination reaction. The  rate of heat recovery 
in this case will be found to be a function of the ratio of the mass diffusion 
coefficient and the thermal energy diffusion coefficient (the Lewis number) 
in exact analogy with the viscous dissipation phenomenon. Furthermore, 
this heat recovery rate depends on the appropriate chemical reaction rates 
and it will also depend on whether the dissociation energy is released in 
the gas phase or directly at the solid surface. 

. 

2. THE CONSERVATION EQUATIONS 

The  mass conservation equation for the ith species of a general mixture 
of reacting gases can be expressed in the form 

div [nj(q + qi)]  = mi, (1) 
2 F 2  
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where ni is the number density of species i and qi is its diffusion velocity 
vector. q is the mass average velocity vector and wi is the ' source ' term 
which results from production of species i due to chemical reactions, the 
units of wi being number of species i produced per unit volume per unit 
time. If mi is the mass of a particle of the ith species, the general mass 
conservation requirement is z m i w i  = 0. Since zminiqi = 0 as a result 
of the definition of diffusion velocity, multiplication of equation (1) by mi 
followed by summation over all i leads to 

where p = zmin ,  the mixture density. 
of the continuity relation. 

and is written as 

divpq = 0, (2) 
Equation (2) is the usual form 

The momentum balance is unchanged when chemical reactions occur 

p(q . grad)q + div p = 0, (3 1 
where p is the pressure tensor (see, e.g. Hirschfelder et al. 1954, eqns. 
(7.2-23) et seq. for definition). 

The energy equation can be derived by considering a particular 
elemental mass of gas moving with the mass average velocity. I n  a steady 
flow this gains internal energy E at a rate pq.gradE units of energy per 
unit volume per unit time due to convection. E is the internal energy 
of the gas mixture per unit mass and is equal to p-lZminiei, where e, is 
the internal energy of a particle of the ith species above some arbitrarily 
determined zero level. For example, for a binary mixture of symmetrical 
diatomic molecules and their dissociated atoms we can take the internal 
energy of a molecule, em, as zero at the absolute zero of temperature. Then 
the internal energy of each atom, e,, at the same temperature will be 
one-half of the energy required to dissociate the molecule at this temperature. 
The elemental mass under consideration will also gain kinetic energy of 
mass motion by convection, but this is accounted for by the action of the 
stresses exerted by the fluid on the element. In addition these stresses 
do an amount of work - p  divq in compressing the element ( p  is thermo- 
dynamic pressure) and dissipate an amount of mechanical energy CD which 
appears in the form of heat. @ is the familiar dissipation function. 
Finally, the element gains energy from two other sources, namely from 
thermal conduction and by diffusion of the separate species across its 
boundaries. Thermal conduction provides a term div(h grad T ) ,  where T 
is temperature and h is the coefficient of thermal conductivity, whilst 
diffusion results in a rate of gain of energy per unit volume per unit time 
equal to -div(znihiq,). hi is the enthalpy of a particle of species i and 
appears here in preference to internal energy ei since each component gas 
in the mixture must perform flow work on the gas of its own species which 
is in front of it. It should be noted that the additional kinetic energy of 
each species which arises from the difference between mass average and 
diffusion velocities has been neglected here, but this is an assumption 
which is generally made (e.g. Chapman & Cowling 1939, p. 145). The 
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contributions from thermal conduction and mass diffusion can be combined 
in a single quantity q,, the energy flux vector, defined as 

so that the energy conservation requirement can ultimately be written in 
the form 

q, = - h grad T + z n i  hi qi, 

pq . grad E = - div q, - p  div q + @. 

(4) 

(5 1 
We shall neglect the thermal diffusion contribution to diffusion velocity 

since this is generally negligible, particularly when we have to deal with 
large concentration gradients. (A description of thermal diffusion is 
given by von KArmAn (1956).) I n  that case the diffusion velocity of species i 
is given by 

n2 qi = - z m j  Dij grad(nj/n) 
Pni j 

(see, e.g. Hirschfelder et al. 1954, eqns. (7.4-3)). The  quantity n is the total 
particle density while ni and nj are the particle densities of the ith and 
j t h  species. mj is the mass of a particle of the j t h  species. Dij is the 
diffusion coefficient for diffusion of species i through species j ,  the 
summation being taken over all species except i. We shall confine attention 
to binary gas mixtures, in which case (6) reduces to  

where g12 is now a binary diffusion coefficient. Some simplification of (7) 
results from the definition of a mass ratio, ci, such that 

Plainly Cc, = 1 and (7) then reduces to 

with a similar equation for q2. 
The  conservation equations can also be written in terms of mass 

fractions, as can the energy flux vector q,. We may also use enthalpy 
per unit mass rather than per particle, but, before making these modifications 
we will simplify the equations to  apply to Couette flow. 

pci = mini. (8) 

(9) c1 q, = - g12 grad cl, 
(Note Bzl = g12.) 

3. COUETTE FLOW 

The  variation of all properties in the x-direction is zero in Couette 
flow (see figure 1 for definitions). I n  order to satisfy the continuity 
equation, equation (2), pu = const., u being the mass average velocity 
normal to the walls. But a = 0 at y = 0 and at y = 6 ; whence it must be 
zero everywhere. 

With these simplifications and treating only a binary mixture consisting 
of symmetrical diatomic molecules with their dissociated atoms, the conser- 
vation equations are as follows. Equation (1) gives 



446 John F. Clarke 

for continuity of the atomic species. 
atom, suffix m for molecule.) 
the walls. 

(We now write suffix a to indicate 
z.1, is the atom diffusion velocity normal to 

The momentum equations (3) give 

and the energy equation (5) becomes 

Hi is enthalpy of the ith species per unit mass and p is the dynamic 
coefficient of viscosity. Making use of equation (9) for the diffusion 
velocities and the fact that c, + c, = 1, equation (12) can be rewritten 

$ ( A $ )  + $(pBurn D$) +p($>a = 0, 

X - 
Stationary 
Lawet wolf. 

Figure 1 .  Couette flow. 

where the difference H , - H ,  has been set equal to D, the dissociation 
energy per unit mass at the absolute zero of temperature. This is an 
approximation which implies equality of the specific heats (per unit mass) 
of atomic and molecular species. In the present circumstances this is 
quite a reasonable approximation and will be dealt with further in 5 4 below. 

Equation (11) can be integrated at once to give p = const. and 

du 
p- = r = const. = T ,  

dY 
( T  is the shear stress, suffix w implying evaluation at the lower wall, y = 0). 
Putting equation (14) into equation (13) permits integration of the latter 
relation, giving 

d T  dCU 
dY dY 

A - + p g U ,  D - + UT, = const. 
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Evaluating the constant in equation (15) when y = 0, it is readily seen 
with the aid of equation (4) to be equal to -qw, the energy flux into the 
lower wall. The total enthalpy of the mixture, H ,  is given by 

H = C, Ha + C, H,n, 

so that, since p is constant here, 

where 

C,, and C,,, are the specific heats of the atomic and molecular species at 
constant pressure, so that c, is the specific heat of the mixture when its 
chemical composition is frozen. The approximation D _N Ha - H ,  has 
been made in equation (16). Then equation (15) can be written as 

W' 
X dH -- 
cI3 dY 

Defining Prandtl number Pr and Lewis number Le as ' 

Pr = pCp/X, Le = p€pg)am/h,  (18) 

H-H,+D(Le- 1)(ca-caw)+&Pru2 = -uPrp,JTuI. ( 1 9 )  

respectively, and assuming that they are constant, integration of equation (17) 
between y = 0 and y = y gives 

This result follows from the fact that 
jY d y  = i' ! dr du = - U , 

U F  n p d u  7 7 u  

u being zero at y = 0. 
equation (19) therefore gives 

When y = 6, then H = H,, c, = c,~) and u = U ;  

Hs - H ,  + (Le - l)D(cas - c a w )  + &Pr U2 = - UPr qw/-rw. (20) 

The recovery enthalpy, H,, is defined as the value of H ,  when qw = 0. 
Whence 

where car is the concentration of atoms at y = 0 under zero heat transfer 
conditions. Equation (20) can now be rewritten 

H,. = H6 + D(Le - l ) (cu6  - car) + &Pr U2, (21 1 

- ( q w / T w )  U Pr = H, - H ,  + D(Le - l ) ( car  - caw), (22) 
so that, defining a skin friction coefficient, C,, and a Stanton number, St, 
such that 

7, = *pw U",, (23 1 
(24) -qw = pw U{H,- H w +  D(Le- l ) ( ~ , , - c ~ ~ ) } S t ,  

equation (22) shows that 
4 
1 St  = - c,. 

2Pr 
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This is the form of Reynolds analogy for Couette flow of a dissociating gas 
mixture, the analogy factor being exactly 1/Pr in this case. This result 
is also given by Liepmann & Bleviss (1956) but is shown to be perfectly 
general here (provided St and C, are defined as in equations (23) and (24)), 
since no mention has so far been made about the chemical state of the gas. 

The  problem is now reduced to that of finding T ~ ,  (or C,). Integration 
of equation (14) gives 

0 

or, in dimensionless form, 

where y' = y/S, u' = u/U and R e ,  = p, US/pU,. 
The viscosity p is dependent upon temperature and chemical composition,, 

the value of C, deduced from equation (26) depending rather critically 
on this variation. There is some evidence, however, to show that p for 
the type of gas mixtures which we are considering continues to obey 
Sutherlands law quite well up  to very high temperatures (e.g. 9000"K), 
and with this in mind we shall assume p proportional to While this 
assumption may not be strictly justifiable, it simplifies the analysis and 
should enable reasonable comparisons to be made under varying conditions. 
Noting that Nusselt number, Nu = StPuRe,,, equation (25) shows 
that we now can express equation (26) as 

U' 
y' Nu = 1 .\/TI du' ; in particular Nu = 2/ T' du', (27) 

0 .r : 
where T' = TIT,. Equations (19) and (22) show that 

H - H i  + D'(Le - 1) (c, - tau,) + $yPrMi ut2 

= u'{Hi -HI,  + D'(Le - 1 ) ( ~ ( ~ ,  - c , ~ ) } ,  (28) 
where H ,  Hk, Hl and D' are H ,  H,,, H, and D divided by RTuJW,,. 
R is the universal gas constant and W, is the molecular weight of the 
molecules. M," = U2Wm/(yRT,,)  and is similar to a Mach number, based 
on the speed of sound at the lower plate. This is only strictly true if the 
gas is undissociated at the lower wall, then being the ratio of specific heats, 
but it is best regarded as simply a convenient non-dimensional group in 
the present circumstances. The  enthalpy is a function of temperature and 
concentration which is known a prioui, so that, once c, is established as 
a function of either T' or u' (or both), equations (27) and (28) enable us 
to find Nu and hence velocity, temperature and concentration profiles. 

Evaluation of concentration now constitutes the major problem and 
to this end one is led to consider the kinetics of the dissociation and 
recombination reactions. Before proceeding with a discussion of this 
topic we will introduce the concept of the ideal dissociating gas, which 
is due to Lighthill (1956), and which permits some further simplifications 
in the treatment of the problem. 
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4. THE IDEAL DISSOCIATING GAS 

It can be shown that the number ratio of the constituents of a dissociating 
diatomic gas in equilibrium is given by 

- _  g:e - exp( - d/kT) (29 ) 
nrn, j,,l 

where suffix e implies equilibrium value. The  quantity d is the dissociation 
energy per molecule and k is Boltzmann's constant. j, and j,,' are partition 
functions for the atomic and molecular species, and may be taken to  be 
products of the simple partition functions of the appropriate degrees of 
freedom, provided cross-couplings between different freedoms are negligible 
(see Moelwyn-Hughes 1947). The  mixture density is p = m,n,+2m,n, 
and it is readily shown that equation (29) gives 

2 
cue - prE exp( - d/kT), 

1 -cue P 
where pd = m,, fi/2jm : this quantity is a characteristic density (Lighthill 
1956), which is found to be roughly constant for oxygen and nitrogen 
over the temperature range 1000" K to 7000" K, being about 150gm/cc 
for 0, and 130 gm/cc for N,. T h e  thermal equation of state for the mixture 
is 

assuming that each component gas in the mixture is thermally perfect, 
so that equation (30) could be rewritten in the form 

P = (1  +C,>P(RIW,)T, (31)  

2 
--- - Pd "exp( - W, DIRT). cue 

1-Ca2e PW, 
This is a rather more convenient form for present purposes. 

The  approximation pL1 = const. requires f," to be proportional to f, 
and it can be shown (Lighthill 1956) that this is equivalent to fixing the 
amount of energy stored in the vibrational and rotational modes of the 
molecules at $kT. (In fact this energy will vary from k T  to 2kT, depending 
on the degree to which the vibrational mode is excited.) The  enthalpies 
per unit mass of each species are then 

and so H, - H, = D + RT/  W,. However, RTI W, is much smaller than D 
for the temperatures which are of interest here and H ,  - H,  N D is a very 
reasonable approximation. (In fact, for a real gas, oxygen for example, 
the vibrational mode of the molecules is very nearly fully excited at such 
temperatures and H,, is nearer to i(RT/W,), so that the approximation 
is better than would be suggested by treating oxygen as an ideal dissociating 

H, = 5RT/W, + D, H, = 4RT/ W,, (33)  

gas. 1 
The  specific enthalpy of the whole mixture is plainly 

H = (4 + c,)RT/ W, + c,, D. (34) 
Equation (34) is used later to eliminate the H' quantities from equation (28), 
(note that H = ( 4 + c , ) T ' + c ,  0'). If it is found reasonable to assume 
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that the mixture is close to a chemical equilibrium state (i.e. c, 2: c,,), 
equation (32) can be used to eliminate c, from equation (28) in terms of 
temperature, Otherwise, c, must be found from the chemical rate 
equations. 

5 .  REACTION KINETICS 

Consider the dissociation reaction of the symmetrical diatomic species, 
A,. The stoichiometric equation describing the reaction is 

in the usual notation (e.g. Penner 1955).  The specific reaction rate constants 
for forward and reverse reactions, Itf and k,, are generally expressed in 
terms of the concentrations of the respective reactants measured in 
moles/cc, for reactions of order higher than the first. We shall write (A,)  
to mean ‘concentration of species A, in moles/cc’ and similarly for the 
other species. The species X in equation (35) may be either A, or A in 
a pure mixture, so that (X) represents the total number of moles of mixture 
per cc. Accordingly ( X )  = p / R T ,  where p is thermodynamic pressure 
and R the universal gas constant, so long as the individual gases A, and A 
can be treated as thermally perfect. 

The net rate of production of the atomic species A, in moles,/cc per sec, 
is 

-- d(A) - 2 k f ( A 2 ) ( X )  - 2k , (A)2 (X) ,  

- d(A) = 2kf(X),xm - 2 k , ( X ) ‘ ~ ~ .  

dt 

or, in terms of mole fractions, 

(36) dt 

(The mole fractions are x ,  = (A2)/(X), x, = (A)/(X).) 
equilibrium conditions, d(A)/dt = 0 and equation (36) gives 

Under chemical 

( X I  = ( X ) K , .  (37)  
k f  - x:e 
kr xme 

K ,  is the equilibrium constant in terms of mole fractions (or what is 
equivalent, number density ratios) and can be found from equation (29 ) .  
Thus, knowing either kf or k,, the other can be found from equation (37). 

Let us now write equation (36) in the form 

- d [ x , ( X ) ]  = - 2 k , ( X ) 3 [ 2 ~ , ,  - xi,  + A X ,  - x , ~ A x , ]  Ax,  - , 
dt xme 

where Ax, = x,-x,,, and assume Ax, -g 1. The reaction will now proceed 
at very nearly constantp and T ,  so that ( X )  and x,, may be assumed constant 
to  all intents and purposes. Then 

-- 1 dAx, 2 -2k,.(x)2[ 2x - X Z e  ] 2: const., 

Ax, dt 1 -xae 
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and we can define a characteristic time, t,, such that 

1 - 1 dAx, 
t, Ax, dt  
- -- - (39) 

Equation (38) shows that t, is constant under the stated conditions; it 
is in fact the time taken for a small deviation of atom concentration to fall 
to l i e  of its equilibrium value at conditions p and T. Thus t, can be used 
as a measure of the rate at which the chemical reaction proceeds in the 
direction of equilibrium, and can be compared with some characteristic 
flow time in order to give an indication of the probable chemical state of the 
gas. The obvious choice of flow parameter is the time taken for an atom 
to diffuse across the layer. In Couette flow equation (9) gives 

and we can reasonably assume (c;'dc,/dy') to be of order unity. The 
binary diffusion coefficient, g,,, is of order 1 cm2/sec at room temperatures 
(- 300" I() and 1 atmosphere pressure and varies roughly as T3I2/p. Thus 
o, - (T/300)3'2(p(atm.)6)-1 so that a characteristic time for diffusion of an 
atom across the layer, t,, may be defined as 

Equations (38), (39) and (40) now give 

1 

or 

(p in atmospheres). 

We can say that if te/td << 1 then the flow will effectively be in chemical 
equilibrium in the gas phase, whilst if tc/td 9 1 then chemical reactions 
occur so slowly in the gas phase that chemical composition will, effectively, 
noe vary on this account. Plainly the factor in square brackets in 
equation (41) can exert considerable influence on the ratio of the 
characteristic times through its influence on tc. The mole fraction x,, 
is never either zero or unity in a finite temperature range (see equation (29)), 
although it may approach these values extremely closely. Equations (38) 
and (39) merely indicate that any excess or deficiency of atoms above or 
below the relevant equilibrium value is adjusted extremely rapidly when the 
mixture is predominantly of the atomic species, whilst the reverse is true 
when the gas is predominantly composed of molecules. The reasons are 
that recombination is a three-body process (two atoms plus any other particle) 
which is therefore relatively improbable when few atoms exist. Dissociation 
is a two-body process requiring, however, a certain high energy level 
encounter between the particles concerned and this is a relatively improbable 
occurrence at the lower temperatures where the mixture is mainly composed 
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of molecules. Within the range 0.1 < x,, < 0.9 the quantity in question 
varies by less than lo2 in magnitude. 

Before equation (41) can be used to provide an indication of the 
magnitude of t J t ,  one must know the magnitude and temperature 
dependence of k,. Here the available evidence is rather indecisive. 
Feldman (1957) suggests that a lower limit €or K, in air (treated as a 
single diatomic gas) is about 10l8 cc2/mole2/sec for temperatures up to 
about 5000" K, the trend being for k, to decrease with rising temperature. 
Fay & Riddell (1958) write the reverse specific reaction rate constant as 
k,  = Kl T--3I2, where Kl is a constant, and estimate Kl to be 5 x 1014(300)3'2 
for oxygen ; in other words, 

k ,  E 5 x 1014( T/300)-3'2 cc2/mole2/sec. 

Hirschfelder (1956), however, quotes a value of 

k, E 10l6( T/300)5'2 cc2/mole2/sec 

for oxygen, basing this result on the theoretical work of Eyring, Gershinowitz 
& Sun (1935) for recombination of atomic hydrogen, whilst Camm & Keck 
(1957), by monitoring the radiative relaxation zone behind a moving 
normal shock wave, deduce a value k, N 10l6 cc2/mole2/sec in pure oxygen 
or nitrogen, which is substantially invariant with temperature. I n  view of 
this conflicting evidence it does not seem unreasonable for the present to 
set k, = cc2/mole2/sec and ignore its temperature variation. Apart 
from Fay & Riddell's, the estimates quoted above lie within roughly an 
order of magnitude of this value either way in the interesting temperature 
range for dissociation. Therefore we shall write 

t , / t ,  N 10-5/p362 (42) 
and, remembering that this estimate may vary by one or two orders of 
magnitude in either direction, use equation (42) to estimate the probable 
chemical state of the gas mixture. 

I n  particular it can be seen that the flow must be very close to a chemical 
equilibrium state for pressures of 1 atmosphere or greater, so long as 6 is 
not much less than 1 cm, but that a decrease of pressure, say down to 
10-2-10-3 atmospheres, combined with shear layer thicknesses around 
1 mm will rapidly lead towards the freezing of homogeneous reactions*. 

So far we have not considered the influence of surface reactions on the 
flow pattern. When the tJ t ,  ratio is very small it seems reasonable to 
suppose that particles remain in a particular flow region for a sufficient 
time to allow the chemical equilibrium state to be very closely approached 
there. Consequently, this state would constitute a good first approximation 
to the true state of affairs and any iterative procedure founded upon it 
would be expected to converge very rapidly. Under these conditions, the 

* In applying considerations of this sort to an object flying at hypersonic speeds, 
it must be remembered that pressures in the boundary layer on the object will usually 
be many times the undisturbed, atmospheric value. 
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species' concentrations and mass fluxes become functions of temperature 
and pressure which will not admit the imposition of arbitrary boundary 
values at the walls y = 0 and y = 6. The surface reaction rate which would 
specify these boundary conditions will vary very widely (for different wall 
materials, for example) so that it may seem that conditions of chemical 
equilibrium in the gas phase and arbitrarily fast surface reactions are 
incompatible. 

For the case of heat transfer in a stagnant gas, Hirschfelder (1956) 
has shown that the two conditions are reconcilable following the introduction 
of transients in the flow variables which have appreciable values only in 
a thin gas layer adjacent to the surface. The methods used by Hirschfelder, 
to evaluate thethicknessof this layer arevalid for Couette flow. The example 
quoted there, for energy transfer through oxygen at one atmosphere pressure 
with no surface reaction, gives the thickness of the layer as less than cm, 
the actual thickness decreasing with increase of wall temperature (N.B. 
temperatures lie in the range 2000-6000°K). For low wall temperature 
values, the fast homogeneous reaction rates cause the atom concentration 
to fall to zero (for all practical purposes) some distance from the wall and 
the problem of surface reactions does not arise. It is interesting to note 
from equation (42) that with p = 1 atmosphere and 6 < cm, t J t ,  
becomes greater than unity, a fact which would lead one to suspect the 
equilibrium approximation. Hirschfelder shows that for plate separation 
.distances greater than the distortion layer thickness, energy transfer rate 
is virtually unaffected by heterogeneous reaction rate. 

The continuity requirement for the atomic species can be expressed 
in the following form, using equations (10) and (36) and writing the 
diffusion velocity va in terms of concentration gradient, 

K ,  is the equilibrium constant in terms of mole fractions and can be found 
frqm equations (29) and (37), 

where T ,  = d / k ,  the characteristic dissociation temperature. For oxygen 
T,,=59000"K and p,= 150gm/cc; whencepK,=1540T exp(-59000/T), 
with p measured in atmospheres. Writing kr as Kl( T)" cc2/mole2/sec, 
equation (43) for oxygen becomes 

- 1540 exp( - 59 000/T) - T (-)], 1-C, (45) P l + c u  
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p being measured in atmospheres. One could now eliminate T from 
equation (45) in terms of c, and u and the y-derivatives could be replaced 
by u-derivatives, using equations (28) and (27). This would result in a 
differential equation for c, in terms of u, but involving the Nusselt number, 
which is not known apriori. The solution would not be seriously influenced 
by the value of Nu and no doubt some plausible value for this quantity 
could be employed at the start of an iteration scheme. However, the 
equation is very unwieldy, and no attempt has been made to solve it here. 
Instead we shall go on to consider the two extreme cases of t / t  < 1 and 

c .  
t,/t, 9 1, assuming in the first case that atom concentration is equal to 
the local equilibrium value, and in the second case that no gas phase reactions 
occur at all. In  the latter case it becomes necessary to consider the details 
of the surface reaction. 

6. CHEMICAL EQUILIBRIUM FLOW 

When tJtd < 1 it can be assumed that c, _N c,, everywhere at the local 
temperature and pressure. It should be observed that this does not imply 
that the net rate of production of atoms is, or even approaches, zero. Indeed 
the reverse is true; the rate of production of a particular species can be 
considered to be 'very fast ' in these circumstances. It is just that the 
chemical reaction can proceed at the required rate with concentrations 
not too far  removed from an equilibrium value. Mathematically, it could 
be said that the coefficient of the term in square brackets on the right-hand 
side of equation (43) approaches 03 while c, -+ c,, in such a way as to cause 
the product to approach a suitable finite, non-zero limit. Then equation (43) 
is not required and c, can be found from equation (32). Putting this value 
into equation (28) provides the required (T', u') relation. 

Since we do not seek great accuracy it is simplest to solve equation (28) 
graphically and, likewise, to integrate equation (27) graphically to find Nu. 
As a numerical example, some values have been obtained in this way for 
energy transfer through oxygen at one atmosphere pressure. The 
temperature at the upper plate has been taken to be 5000°K, the lower 
plate being maintained at T ,  = 1000" I(. The dimensionless dissociation 
energy per unit mass, D', is therefore equal to 59 in this case, and 
p d / p u ,  = 0-39 x 106. The Prandtl number has been taken to be 0.75, while 
y at the lower wall is equal to Q for the ideal dissociating gas. These values 
are reasonable approximations in the circumstances as we are more interested 
in trends and comparisons than in actual values. The (T',u') relation 
has been found under these conditions for two Mw values, namely Mu, = 2 
and M ,  = 20, and several Lewis number values between 1.0 and 2-0. 
The value of Le for oxygen is probably about 1.4, the other values being 
included to demonstrate the effects of mass diffusion on the profiles, etc. 

Dimensionless velocity, temperature, concentration of atoms and 
enthalpy profiles are shown in figures 2 to 5 for Mu, = 2 and figures 6 to 9 
for Mw = 20. Figure 10 shows the variation of Nusselt number with 
Lewis number for the two Mu, values. 
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All profiles are, to a greater or lesser extent, affected by the value of the 
Lewis number, although the variations are so small in the case of velocity 
distribution when Mu, = 2 that they do not show up on the scale of figure 2. 
Similarly Nu depends slightly on Le,  although the variation is not 
detectable when M ,  = 2. The results of $ 3  show that the rate of energy 
transfer into the lower wall is given by 

Nu h 
- qW = - -2- [Ha - H ,  + D ( L e  - 1)(caS -caw) + $PrU2].  (46) 

8 c,,, 

1.c 

0.8 

0.6 

Y' 
0.4 

0-2 

0 

Figure 2. Velocity profile in chemical equi- 
librium flow. M ,  = 2, T ,  = 1000" K ,  
T ,  = 5000"K, p = 1 atmosphere. All 
values of Le. 

Figure 3. Temperature profiles in chemical 
equilibrium flow M ,  = 2, T, = 1000" K ,  
T6 = 5000" K, p = 1 atmosphere. 

'0 0-2 04 0.6 0.8 1.0 
Ca 

Figure 4. Atom concentration profiles in 
chemical equilibrium flow. Mw = 2, 

atmosphere. 
T ,  = lOOO"K, Ta = 5000"K, p = 3 

0 20 40H,60 80  1 0 0  

Figure 5 .  Enthalpy profiles in chemical 
equilibrium flow. M ,  = 2, T ,  = 1000" K ,  
Ta = 5000"K,p = 1 atmosphere. 
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U' 
_Figure 6. Velocity profiles in chemical 

equilibrium flow. M ,  = 20, T,  = 1000" K, 
T8 = 5000" K, p = 1 atmosphere. 

wO 0.2 04 0.6 0.8 1.0 
Ca 

Figure 7. Atom concentration profiles in 
M ,  = 20, chemical equilibrium flow. 

phere. 
T ,  = 1000"K, T,3 = 5000"K,p = latmos- 

Figure 8. Temperature profiles in chemical equilibrium flow. 
M ,  = 20, T ,  = 1000"K, Tg = 5000"K,p = 1 atmosphere. 
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Since Nu is substantially invariant with Le, the energy transfer rate 
is almost a linear function of (Le- l), other things being equal. For the 
examples evaluated here the ratio q,(Le = 1*4)/q,(Le = 1.0) is about 1.3 
when Mx,  = 2 and 1-1 when M ,  = 20. An analysis which assumes 
Le = 1.0 may therefore give energy transfer rates which are quite 
significantly low, particularly for the case in which viscous dissipation 
contributes a relatively small term. (A practical example of such a flow 
occurs in the region of the forward stagnation point of hypersonic vehicles.) 

NU 

Figure 9. Enthalpy profiles in chemical Figure 10. Nusselt number variation with 
Lewis number for M ,  = 2, and hf, = 20 ; 
chemical equilibrium flow. 

equilibrium flow. M ,  = 20, T ,  = 1000" K, 
X8 = 5000" K, p = 1 atmosphere. 

It should be observed that for all cases considered in this section, 
dc , /dy  'v dc,,,/dv + 0 as y --f 0. Therefore all the energy is transferred into 
the lower wall by thermal conduction alone and temperature gradients 
there should be larger for larger values of Le. This effect can be seen in 
figure 3, when Mu, = 2, but does not show up  on figure 8. Inspection 
of the solution in the latter case shows that in fact the (T ' ,y ' )  curves cross 
over near to T' = 1 and the picture is then similar to the lower half of 
figure 3. * The effect of Lewis number on the profiles may be qualitatively 
explained as follows, viewing an increase in Lewis number as an increase 
in the ability of atoms to diffuse through the layer. Then for larger values 
of Le these particles can penetrate to regions closer to the wall before 
recombining and givin2 up their dissociation energy as heat, resulting in 
the steeper temperature gradients there. In the outer parts of the layer, 
viscous heating tends to  maintain the atom concentration at its upper wall 
value, indeed when M ,  = 20 the viscous heating is to intense as to cause 
an increase in atom concentration (see figure 7 ; note cas = 0.965 in this 
case) and rapidly leads to virtually complete dissociation. The  increased 
mobility of the atoms (implied by larger Le values), permits them to escape 
from this region more readily, however, and the viscous heating can only 
maintain a smaller zone of high concentration when Le is large. The  net 
result is that a greater proportion of the viscous heating is available in the 

F.M. 2 G  
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form of thermal energy when mass diffuses less readily, as exemplified by 
the very large temperature peak in figure 8 when Le = 1.0. The  temperature 
values there will be modified somewhat by ionization of the oxygen atoms, 
a fact which may well cause Le to be of some importance in magneto- 
gasdynamic applications. 

The effects of variation of wall temperature ratio, T,/T,, on Nu are 
rather complicated, as can be appreciated from an inspection of equations 
(27) and (28). The  rapid rise of c,, with temperature is an important 
factor and it has not been found possible to relate Nu to T J T ,  in any simple 
manner. However, in an attempt to obtain a reasonable correlation between 
these quantities for the single case, T ,  = 1000" K, it was found that better 
results were obtained if the peak value of temperature in the layer, T,, 
was used in place of Ta. This choice affected the high Mu, values most 
since viscous heating gave T, values in excess of T,  in all cases. Only for 
values of Ts approaching T,  was the effect felt at Mu. = 2. Some results 
of plotting Nu against C = (pp)p / (pp)w are shown in figure 11, suffix p 
indicating evaluation at peak temperature conditions. The  general quantity 

Nu 

Figure 11. Variation of Nusselt number with wall temperature ratio, T,/T,, in 
chemical equilibrium flow. 

Symbol :- 0 A X V + 0 
Ta/ T ,  :-- 5.0 4.0 3.5 3.0 2.0 1 .o 

C is important in boundary-layer theory, where it appears as an explicit 
factor in the boundary-layer equations. Fay & Riddell (1958) have 
demonstrated its significance in the stagnation region where a factor 
[(pp),/(pp)u,]0.4 appears in the heat transfer rate value, suffix 6 implying 
evaluation at the edge of the boundary layer in this case. I t  is not too 
surprising to find that C correlates wall temperature variation quite well 
in Couette flow, therefore, although it must be stressed that the examples 
quoted here are for one lower wall temperature value only ( T ,  = 1000" K). 
Since flow in a stagnation region is generally one for which viscous 
dissipation plays only a small part in determining energy transfer rate, 
it tends to be closer to Couette flow at low Mu, values, where T, is less 
than, or at most of the same order as, T8., On this basis, wall temperature 
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ratio effects in boundary-layer flows with large viscous heating terms may 
perhaps be better correlated using a peak temperature in the layer, as is 
so for the Mu, = 20 case in Couette flow. The. small amount of evidence 
which has been derived here to support this suggestion is in no way 
conclusive, but may perhaps be borne in mind in future studies. 

The  values of C used here are equal to [ ( l  +C,~>,(T , /T , )~~~]-~ ,  since 
c,,,, is zero for all practical purposes when T,u, = 1000°K. I t  appears 
from figure 11 that Nu varies as some power of C which differs in different 
ranges. When M ,  = 20, the lowest value of T, is about 3800" K, so that 
a fair degree of dissociation still exists there (cae 2r' 0.47 at T = 3800" I(, 
p = 1 atmosphere). T h e  same is true of the first three values of C when 
illw = 2 (see figure l l ) ,  but at C = 0-5 (where T, N 3250" K and c,, 2: 0.1) 
the slope alters abruptly. It must be concluded that peak temperature 
and degree of dissociation have a significant effect on Nusselt number. 

7. CHEMICALLY FROZEN FLOW 

Having considered some aspects of chemical equilibrium flow ( tc / td  < 1)  
attention will now be directed towards flows at the other extreme, for which 
t J t ,  % 1. I n  this case, chemical reactions occur so slowly in the gas phase 
that they can reasonably be neglected altogether in a first approximation 
and the term W ,  in equation (10) put equal to zero. This state will be called 
chemically frozen flow and $ 5  has indicated that it may be a valid concept 
at low pressures and/or small values of S. 

T o  solve this problem it is necessary to consider the details of the surface 
reaction which may take place. The  heterogeneous recombination reaction 
occurs between a gas atom and an atom adsorbed (or chemisorbed) by the 
wall. Observations (for example Shuler & Laidler (1949)) have shown this 
to be a first-order process, requiring the surface to be fully covered with 
adsorbed particles. The  efficiency of the wall as a catalyst for the 
recombination reaction can be defined as the ratio of the number of gas 
atoms being converted into molecules to the total number of gas atoms 
striking the wall per unit area per unit time, and will be denoted by r. 
For .the type of flow represented here by Couette flow, the microscopical 
system is not too far removed from its equilibrium state and for present 
purposes it can be assumed that the actual distribution of molecular 
velocities is Maxwellian. The  Maxwellian distribution function, F,  is 
expressed in terms of the peculiar velocities of the particles of a particular 
species (vector q: with components ui, 21: and wi ) ,  this velocity being defined 
as the velocity of random, thermal motion of a particle relative to the local 
mass average velocity. The  mean of qi over all particles of species i is the 
diffusion velocity, qi. The  distribution function F is given by 

F = ni - ,exp(-miq?/ZkT), ( 22T)3'2 (47) 

where ni is the number density of species i, mi is the mass of a particle and 
k is Boltzmann's constant. The  number of particles whose velocities lie 

2 G 2  
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in the range q; to q: + dq; is F du; dvi dwi. Since the mass average velocity 
at the wall is zero in both Couette and boundary-layer flows, the number 
of particles of the ith kind-striking the wall per unit area per unit time will 
be 

siw = jm dui jrn dwi v;F dv; = n,,,,kT,(2~rn~kT,)-11~, 
- -m  - -m - - m  

or 

where xi ,  is the mole fraction (= niw.n,) and p is the thermodynamic 
pressure (= n,kT,). Equation (48) now provides an estimate of the 
rate at which gas atoms strike the wall and from the definition of recombina- 
tion coefficient I?, the mass flux of atoms into the wall is seen to be r m ,  saw. 
With no reactions occurring in the gas phase, the continuity requirement 
(equation (10)) becomes simply 

siw = xiwp(2nmi kT,)-lI2, (48) 

-in particular, for oxygen, 

We will only deal in detail with the lower wall, assuming that conditions 
at y = 6 correspond to the equilibrium state at the appropriate temperature 
and pressure. The  quantity p g a m  in equation (49) can be written as p/Sc, 
where Sc is the Schmidt number (Sc = Pr/Le). S c  is constant through 
the layer since both Le and Pr have been assumed constant, so that writing 

proportional to d T  as before, equation (49) assumes the dimensionless 
form 

sscrp (%). (51) 
dca - 1 
dy’ v‘T’ p .w(2~m,r  KT,)lI2 1 + c , ,  

But 
(dC,J@) = (dc, /dd)  (du’/dy’) = (dC,/du’)( NU/  T’ ) 

from equation (27), so that equation (51) can be written 

where A is a constant. Integration of equation (52)  yields 

c, = ([,a - CUU.)U’ + c,,, ( 5 3 )  
since c, = c , ~  when u‘ = 1 and c, = c,,, when u’ = 0. 
given by 

The constant A is 

The concentration of atoms at the lower wall can now be determined 
as a function of recombination coefficient in any particular circumstances, 
.once the Nusselt number has been found. By writing the dimensionless 
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enthalpy values appearing in equation (28) in terms of T‘ and c,, (see $4) ,  
equation ( 5 3 )  can be used to eliminate c, in terms of u’. Then the (T’, u ’ )  
relation required for evaluation of Nu is found to be 

* (55) 
T‘ = [(4+c,,)(T,/T,,.)- (4+~, , )+ +~PrMi]u’ -  1 2Y P.M:,u‘~ 7 

(4 +caw) + (cad - cu,)u’ 
Since the (T’, u’) relation is a function of ccltt, it would be possible to use 
equation ( 5 5 )  to find Nu for some chosen c,, value and then to  use equation 
(54) to find the value of (Values 
of T,, T,, Mu,, p ,  etc. would be known since they are required to specify 
the problem.) However, it is found that the (T’,u’) relation does not 
depend very critically on the value of c,,, so that Nu is substantially 
invariant with this quantity for any chosen T , / T , ,  c,,, Mu>, etc. Lewis 
number does not appear in equation ( 5 5 ) ,  except through its influence 
on tau>, whence it can be inferred that Nu is independent of Le for all 
practical purposes. 

appropriate to the chosen conditions. 

The  energy flux into the lower wall is 

and is in part due to thermal conduction, in part due to atom diffusion 
with release of dissociation energy directly at the wall. Since the (T‘, u’) 
relation is independent of c,,, it can be seen that the (T’,y’) relation is 
likewise independent of this quantity ; therefore, for any given values of 
T,, T , ,  6, cad and Mu,, heat transfer by thermal conduction takes place 
at the same rate for all values of r in chemically frozen flow. I n  other words, 
the temperature profile through the layer does not depend on the surface 
reaction rate. T h e  remaining mechanism of energy transfer, however, 
depends critically on the value of I?. The  second term on the right-hand 
side of (56) can be rewritten as ( p ,  gaWL DNu/S)(dc,/du’),,, ,,, since T’ = 1 
when y’ = 0, and (53) shows that (dc,/du’),,=,, = c,,-c,,, where c , ,  is 
found as a function of I? from (54). It can be seen from (54) that c,, is a 
minimum when I’ has its maximum value of unity and furthermore that 
c , ,  can never be equal to zero. (It is, of course, always less than cud unless 
I? is negative. This would imply that the surface reaction was a dissociation 
rather than a recombination reaction, however, requiring T ,  values higher 
than would be practically possible.) From this result, the conclusion can 
be drawn that it is not possible to recover all the dissociation energy in 
chemically frozen flow that may otherwise be recovered in chemical 
equilibrium flow under similar conditions, provided that the T ,  value 
is not too high. (It seems unlikely that T ,  could be allowed to  go much 
above 1000-1500” K in a practical case.) 

For comparison with the previous, chemical equilibrium case some 
values have been calculated for T6 = 5000“ K, T ,  = 1000” K and Mu, = 2, 
the gas being oxygen as before. T h e  value of c,, has been set equal to  1.0 
and the Schmidt number Sc = 0*75/1.4. A reasonable estimate of p for 
the mixture is p = 5 x 10-4(T/1000)1’2 gm/cmsec (being roughly the value 
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for molecular oxygen at high temperatures), bearing in mind the assumptions 
previously made with regard to this quantity. The  Nusselt number, 
calculated graphically, has the value 1.76 and equation (54) gives 

(In the event that I' = 0, equation (54) gives caw = cad = 1.0, and Nu can 
be evaluated analytically using (55). For the example quoted here, 
Nu = 1.73, in good agreement with the graphical evaluation for caw < ca6.)  
Figures 12 and 13 compare the velocity and temperature profiles in the 
two cases (N.B. Le = 1.4 for the equilibrium flow), the profiles being 
independent of S so long as it is not too small in the chemical equilibrium 
case. The curves marked ' chemically frozen flow ' are good approximations 
for all surface reaction rates. The filling out of the equilibrium state 
temperature profile due to gas phase recombination reactions is apparent in 
figure 13. Figure 14 compares the ( ' dimensionless ') concentration profiles. 

When the product pS = 10-3, equation (57) gives 0-15(1 -c&) = rc,, 
and this relation is shown plotted in figure 15. The least value of caw in 
this case is almost equal to 0.15. It can be seen that pS = is consistent 
with the requirement for chemically frozen flow, since equation (42) could 
be written as t,/t, - 1O/p, and frozen flow would in all probability occur 
for p < 10-1 to (In passing, it appears to be quite 
possible that frozen flow conditions may be realized on a model in a con- 
ventional shock tube, provided the low pressure end can be sucked down 
sufficiently far. Such conditions may also arise during satellite re-entry 
into the earth's atmosphere.) 

atmospheres. 

'0 0.2 0.4 0.6 0.8 1.0 
U' 

Figure 12. Comparison of velocity profiles. 
M ,  = 2, T ,  = 1000"K, T6 = 5000°K. 

Figure 13. Comparison of temperature profiles. 
&Iw = 2, T, = 1000" K, T ,  = 5000" K. 

When I' = 1.0, the rate of energy transfer is a maximum and it is 
interesting to compare it with the chemical equilibrium value in otherwise 
similar circumstances. Denoting final energy transfer rate in chemically 
frozen flow by guy, and in chemical equilibrium flow by qZI,?, the ratio 
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'0 0.2 0.4 0.6 0.8 1.0 

Figure 14. Comparison of atom concentra- 
tion profiles. Mu, = 2, Tw = 1000'K, 
T ,  = 5000'K. 

0 

Figure 15. Surface recombination coefficient 
u s  atom concentration at the wall. 
M W = 2 ,  T ,  = 1000" K, T ,  = 5000" K. 
p6  = atm. cm. 

qtc.f/qu,e E 0-85 for the examples quoted here. Thus it would appear that 
the ' fully catalytic wall ' is a less effective means in these particular circum- 
stances of recovering dissociation energy than gas phase recombination. 

Couette flow can be interpreted as a crude approximation to a laminar 
boundary-layer flow in which the effects of convection have been neglected 
compared with those of diffusion, the Couette flow thickness 6 being regarded 
as a local boundary-layer thickness. It is therefore interesting to compare 
the present theory with that of Fay & Riddell (1958), bearing in mind that 
actual numerical values may be widely different, whilst the general effects 
of the various parameters on the final result are in all probability similar. 

For the heat transfer rate, - qw, in the stagnation region of a blunt-nosed 
body Fay & Riddell give 

-qu, = h, Nu,(H,+:u2-Hu,) ,  
x c p w  

where x = distance measured round the nose from the stagnation point, 
suffix w refers to the wall, and suffix 6 to the edge of the boundary layer. 
U is velocity at the edge of the boundary layer, so that Ha+ a U 2  = H,, 
the stagnation enthalpy. Nu, is a Nusselt number found to be given by 

where Re is a Reynolds number, Re = Uxp,/pW and Dc,, is the amount 
of energy per unit mass in the flow outside the boundary layer which is 
stored as dissociation energy. A is a constant almost equal to 0.5 which 
varies somewhat according as the flow is in chemical equilibrium or is 
chemically frozen. (In their later paper, A = 1 and the Lewis number 
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is raised to a power equal to roughly 0.6, which also varies somewhat with 
the chemical state of the flow. The  numerical differences are very small, 
however, when Le - 1.) 

The general result is seen to be very similar to the Couette flow result 

Nu X -qu. = - S ( H , - H , + D ( L e -  1)(ca,-c, , , , , )+~~rU2),  

when allowance is made for the difference in definition of Nusselt number 
in the two cases and for the interpretation of 8. (The pp ratio dependence 
is not so clear cut, but this is hardly surprising since boundary-layer thickness 
is directly affected by the values of p and p whereas 8 in Couette flow is not.) 
The  two solutions compare well in general shape when the flow is in chemical 
equilibrium and the wall is ‘cool ’, for then cczr E 0 and H, $ H,,., 
H ,  + gPrU2 9 H , ,  in each case. An important difference arises when 
the flow is chemically frozen, however, as a result of differences in the 
interpretation of a fully catalytic wall. Fay & Riddell (in their later paper) 
remark that when the wall is catalytic, “the atom concentration will be 
reduced to its equilibrium value at the wall temperature ”. In  particular, 
if T ,  is low enough, c , ,  would approach zero on this hypothesis, whereas 
it is clear from the present work that this can never occur since it would 
require an infinite value of the recombination coefficient I’. When 
comparing quy and qu,e values for Couette flow, the consequences 
of assuming c,, = 0 in place of putting F = 1 are not too serious (in fact 
quy/qwe for c, ,  = 0 is roughly 0.9 in place of 0.85 when I’ = 1). But 
Hirschfelder (1956) suggests that F for recombination of oxygen atoms 
on a metal surface is roughly equal to 2/T,, so that it is never greater than 
10-2 in a practical case. when 
T ,  = 1000” K and the lower wall is metallic, whence it can be seen from 
equation (57) that c,, N cad = 1.0. Thus only a very small fraction of the 
dissociation energy is recovered and qwf/qv,e _N 0.21, representing a 
considerable reduction in the frozen flow heat transfer rate. 

8 CP?U 

For the examples quoted here, I’ - 

8. CONCLUSIONS 
It has been shown how the homogeneous chemical reaction rate 

exercises considerable control over the detailed properties of a layer of shear 
flow. When these reaction rates are fast compared with the rate of diffusion 
of the various chemical species in the mixture, local chemical equilibrium 
composition is closely approached and the nature of the surface reaction is 
is unimportant in the majority of the flow. In  particular, energy transfer 
rate is effectively uninfluenced by the surface reaction rate. When the 
lower wall is sufficiently cool, as it may have to be in practice, the atom 
concentration falls to  zero some distance above the surface and energy is 
finally transferred to the wall by thermal conduction alone. 

When homogeneous reaction rates become very slow compared with 
atom diffusion rates, the picture changes considerably. Energy transfer 
into the wall occurs through both possible mechanisms (even when the 
wall is cool), the thermal conduction contribution remaining sensibly 
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independent of surface reaction rate, whilst the atom diffusion contribution 
depends critically on the value of surface recombination coefficient. If 
the wall is a very effective catalyst for the recombination reaction, almost 
all the atoms which strike it will recombine and give up  their dissociation 
energy to it directly. Thus  a large ' atom sink ' is set up at the wall, which 
requires large concentration gradients to provide the necessary rate of atom 
diffusion. For any given value of the 'external' concentration (cas) an 
increase in the value of I' will therefore result in lower atom concentrations 
at the wall, and hence in higher rates of final energy transfer. By the nature 
of the surface reaction, c,,, can never be zero there since, if it was zero, 
there would be no atoms present to take part in the reaction. 

It is suggested that even for quite high surface reaction rates (e.g. one 
atom in every 100-1000 atoms which strike the wall recombining) energy 
transfer occurs significantly more slowly in chemically frozen flow than 
in otherwise comparable circumstances with chemical equilibrium flow. 
It seems reasonable to suppose that the influence of the surface reaction 
spreads out into the shear layer as homogeneous reaction rates decrease. 

The present work is a revised version of a report written for the English 
Electric Co. Ltd., G.W. Division, Luton (Clarke 1957). The  writer is 
particularly indebted to Dr  M. McChesney, now with the B.T.H. Co., 
Rugby, for many valuable discussions on the problem. 
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